If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-155x+1400=0
a = 1; b = -155; c = +1400;
Δ = b2-4ac
Δ = -1552-4·1·1400
Δ = 18425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18425}=\sqrt{25*737}=\sqrt{25}*\sqrt{737}=5\sqrt{737}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-155)-5\sqrt{737}}{2*1}=\frac{155-5\sqrt{737}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-155)+5\sqrt{737}}{2*1}=\frac{155+5\sqrt{737}}{2} $
| 97-x=176 | | -2(g+-2)=-2 | | 3x+27x-2=6(5x+4) | | (2)^2x-20(2)^x+64=0 | | 2.88(r+-2)=-2.88 | | 4(r+18)=92 | | x=-9+8x | | 8a–5=2a+19 | | 14x=5x-1 | | 125j+550=31.75 | | F(x)=1/5x+6 | | (5x+52)°=(13x+34)° | | –12q+23q+4q−(–3q)=–18 | | 14x=5x–1 | | –12q+23q+4q−–3q=–18 | | 10x=0.5x+6 | | 3/9=x=27 | | -10(x)=10x-50 | | -8(d+12)=-64 | | S=33-5t | | 44=8-9y | | -2/3x+(3/7)=1/2 | | r^2+7r-12=0 | | (u+5)^2-8=0 | | (5x+52)=(13x+34) | | v/4+-30=-38 | | 27b-38b=-11 | | -18+-3q=3 | | 1/4x+1/8x-1+2/4=85/8 | | 26.5=9.5+2.5(x+5.5 | | 8(3)^(x+5)=32 | | 13=d•6 |